Tarlton Stream and Wetland Restoration Project

Contract #: D05013-1 County: Cumberland

Cataloging Unit: Cape Fear 03030004

Monitoring Firm POC: Mid-Atlantic Mitigation, LLC

Rich Mogensen (704) 782-4133 Kimley-Horn Associates, Inc. Will Wilhelm (704) 333-5131

Prepared For: EEP Project Manager, Guy Pearce

Year 3 (2008) Monitoring Report

TABLE OF CONTENTS

EXE	CUTIV	E SUMMARY PROJECT ABSTRACT	1
PRO.	JECT B	BACKGROUND	2
2.1	LOC	ATION AND SETTING	2
2.2	STRU	JCTURE AND OBJECTIVES	2
PRO.	JECT (CONDITON AND MONITORING RESULTS	6
3.1	VEGI	ETATION ASSESSMENT	6
	3.1.1	Soil Data	6
	3.1.2	Vegetative Problem Areas	6
	3.1.3	Stem Counts	6
	3.1.4	Vegetation Assessment Summary	8
3.2	CHA	NNEL STABILITY ASSESSMENT	8
	3.2.1	Cross Sections	8
	3.2.2	Bank Full Events	9
	3.2.3	Longitudinal Profiles	10
	3.2.4	Wetland Assessment	10
	3.2.5	Site Stability Assessment Summary	11
Figur	e 1: Pro	oject Location and Drainage Map	
Figur	e 2: Mo	onitoring Plan View	
		<u>TABLES</u>	
Table	e I.	Project Mitigation Structure and Objectives	4
Table		Project Activity and Reporting History	5
Table	e III.	Project Contacts	5
Table		Project Background	6
Table		Preliminary Soil Data	6
Table		Stems Counts	7
Table		Stems Per Acre	7
	VIII.	Potential Bankfull Events	10
Table		Success Criteria Attainment	11
Table	\mathbf{x}	Wetland Criteria Attainment	11

APPENDICES

APPENDIX A. Vegetation Raw Data

APPENDIX B. Cross Sections

APPENDIX C. Profile Survey

APPENDIX D. Photo Log

APPENDIX E. Ground and Surface Water Data

Bank Full Event Log

Rainfall and Stream Gage Graphs

1.0 EXECUTIVE SUMMARY/PROJECT ABSTRACT

On behalf of the North Carolina Ecosystem Enhancement Program (NCEEP), Mid-Atlantic Mitigation, LLC (MAM) with technical assistance from Kimley-Horn and Associates (KHA) restored, enhanced and preserved 4,402 linear feet of stream, restored 6.6 acres of riverine wetlands and enhanced 2.7 acres of riverine wetlands. Construction of the project began in November 2005 with beaver dam removal and grade-control structure installation, continued into March 2006 with final planting completed in June 2006. The Tarlton Stream and Wetland Restoration Project (Project) will provide NCEEP with 3,930 Stream Mitigation Units (SMUs) and 8.0 Wetland Mitigation Units (WMUs).

The objective of the restoration approach is to plan, design, and construct a dynamically stable stream/riparian floodplain and bottomland hardwood riverine wetland community providing an ecological improvement for the entire site and watershed. This project is designed to provide a stream channel that neither aggrades nor degrades while maintaining its dimension, pattern, and profile with the capacity to transport the surface water and sediment load. Also, the Project aims to reestablish the primary stream and wetland functions associated with nutrient removal and transport, sediment retention, wildlife (both aquatic and terrestrial) habitat, and to provide restoration of riparian zones that historically were an impounded lakebed. The restoration approach, due to the existing condition (fluctuating open water levels caused by beaver activity) and varied historical conditions of the site (lake, dry lake bed, beaver impoundments, etc.), involved an "adaptive" management phased process.

The project was constructed in two phases. The restoration approach established a stable grade control stream section, which maintains the elevation of the entire stream thalweg and the floodplain by controlling the downstream end of the project area. The floodplain elevation below the removed dam was set by installing several rock-cross vanes and a constructed riffle to hold the grade of the existing lake bottom area which is now the floodplain area above the former dam. This design provides both secondary water quality and primary flood storage benefits. The Project (both streams and wetlands) underwent a natural adjustment to a more stable aquatic ecosystem. The streams continued to reestablish natural channel function. This adaptive management approach allowed the streams to naturally seek equilibrium and appropriate dimension, pattern, and profile as the Project stabilizes. The primary restoration approach is to determine whether the stream adjustments trend towards the design criteria and restoration goals based on upstream reference morphology and vegetation communities.

The riverine wetland and buffer vegetation community will transition as the system seeks hydrologic and biologic equilibrium. After removing the dam sediments were unconsolidated and mucky with saturation. It was anticipated that settling and subsidence would occur throughout the initial growing season, first through evaporation and then through transpiration as the herbaceous cover (seeded and natural propagation) established. This did occur and continues to progress. Areas that were not

saturated/ponded (i.e. fringe areas and/or headwater wetlands) were initially planted with bare root seedlings and containerized plants to establish a bottomland hardwood riparian wetland community. Later as the site dewatered, thousands of containerized, bottomland hardwood trees & shrubs were planted throughout the stream and wetland areas.

The stream(s) will be monitored for stability of dimension, pattern, and profile using standard practices including permanent cross sections, riffle-run-pool analysis, and pebble counts. Wetland hydrology and vegetation success will be monitored using self-reading ground water monitoring gages and standardized, randomly placed permanent vegetation plots which will be monitored for species diversity and survival. Monitoring data will be analyzed to determine what remedial actions if any are required and any remedial actions proposed will be detailed in the annual monitoring reports.

The third year monitoring began with plant counts and photos on July 30th, 2008, and was completed with survey work on November 20th. The vegetation in all of the plots currently meets and/or exceeds the requirements while profiles and cross sections continue to indicate increased stability and function. Monitoring success will be discussed in detail in Section 3.

2.0 PROJECT BACKGROUND

2.1 LOCATION AND SETTING

The Project is located in the City of Fayetteville, Cumberland County, North Carolina on the corner of Clearwater Drive and US 401 Bypass (Country Club Drive). A location map is included in Figure 1. The project site is located in the Upper Cape Fear River Watershed (USGS 8-digit Hydrologic Unit 03030004, and NCDWQ River Basin 03-06-15), and is within the NC Ecosystem Enhancement Program (EEP) Cross Creek Targeted Local Watershed (00050). The project site was historically impounded by a dam built in the 1970s, creating Country Club Lake which impounded about 4,500 feet of two perennial prongs of a tributary to Cross Creek. The project drainage area is approximately 2.6 sq. mi. flowing into Cross Creek, a 303(d)-listed stream for impaired biological activity. The eastern prong of the project which is named UT to Cross Creek East has a drainage area of 1.0 square miles. The western prong named UT to Cross Creek West has a drainage area of 1.6 square miles. The project area conservation easement consists of 17.8 acres. The restoration project is being managed and monitored by Mid-Atlantic Mitigation, LLC but the property is owned by Greg and Patricia Tarlton and the conservation easement is held by the State of North Carolina.

2.2 STRUCTURE AND OBJECTIVES

The goals and objectives of the Project are to restore a naturally stable stream and riparian wetland community; to restore a bottomland hardwood wetland community; and to provide stormwater management for downstream development. In addition, water quality will be improved, flood storage will be increased, wildlife and aquatic habitat will be restored and the threat of flooding of downstream areas will be significantly reduced.

Phase I (completed Fall 2005): A beaver management plan was implemented to remove all the beavers from the project site. The removal of the old dam debris and spillway was completed in November and December 2005 making it more difficult for the beavers to re-establish a dam at its existing location. A beaver control program which includes regular site visits to the former dam area has been implemented and will continue throughout the monitoring period. In mid-November 2005, the lake water level was lowered over a 3-5 day period slowly releasing the water downstream to prevent flooding and erosion. In conjunction with removing the beaver dams, the stream section through the area of the historical dam and beaver dams was restored. The channel in this section (approximately 175 feet) was restored using a Priority I (Rosgen) restoration approach. The stream restoration included establishing a bankfull channel and active floodway through the relic spillway/dam and providing a variety of in-stream structures (rock vanes, constructed riffle, and step pool structures) to provide grade control, stability, and improve aquatic habitat diversity. The natural channel design was based on the upstream reference reach. The restoration project was constructed through and under an existing aerial sanitary sewer crossing that is cut out of the easement limit. In addition to the stream restoration, a BMP (level spreader / pre-formed scour hole) was constructed in this area at the outlet of a stormwater drainage pipe. This restoration establishes a stable grade control, which maintains the elevation of the entire stream thalweg and the floodplain by controlling downstream end of the project area. The floodplain elevation below the dam was set to hold the grade of the existing lake bottom which is now the floodplain area above the former dam area. This also prevented any sediment that was in the old lake from being washed downstream and to provide a natural "pinch-point" corresponding with existing topography. This pinch-point will help re-establish and control natural hydrology in the proposed riparian wetland during events above bankfull and act as a large detention area.

Phase II (completed in July 2006): Once the beavers, beaver dams, and impounded water were removed, and the downstream grade control established, the Project (both streams and wetlands) underwent a natural adjustment to a more stable aquatic ecosystem. The stream segments found their hydrologic equilibrium and re-established bed and bank features. In addition, the site soils gradually dewatered allowing the deposited sediments to consolidate and subside. During the first growing season the Project soils stabilized through evapotranspiration and subsidence processes. The streams continued to reestablish natural channel function, and were evaluated for necessary adjustments. This adaptive management approach allowed the streams to naturally seek equilibrium and appropriate dimension, pattern, and profile as compared to the upstream reference reach. The primary restoration approach is to determine whether the stream adjustments trend towards the design criteria and restoration goals based on reference morphology and vegetation communities. The eastern and western prongs are designed as Rosgen C5->E5 channels. During each monitoring year, where the channel slope and/or dimension are found to be unstable, structures such as rock cross vanes, log cross vanes, log vanes, log sills, and constructed riffles may be utilized to help maintain the channel compared to the reference morphology.

The riparian wetland and buffer vegetation community will transition and stabilize as the system seeks hydrologic equilibrium. The initial planting/seeding of the site was completed in March-April 2006 to establish herbaceous cover of exposed bare soils with the expectation that the initial growing season would allow for evapotranspiration to dewater lake bottom sediments. These sediments were initially unconsolidated and mucky with saturation. It was anticipated that settling and subsidence would occur throughout the initial growing season, first through evaporation and then through transpiration as the herbaceous cover (seeded and natural propagation) established. This has occurred as proposed. Areas that are not saturated/ponded (i.e. fringe areas and/or floodplain wetlands) were planted with bare root seedlings and containerized plants to establish a bottomland hardwood riparian wetland community. Additional plantings may occur as needed as the site continues to consolidate and settle.

In order to stabilize the newly constructed stream channel and flood plain areas both temporary and permanent grass seed as well as wetland herbaceous seed were applied to all restored areas. The types of seeds used were: *Leersia oryzoides* (Rice Cut grass); *Panicum clandestinum* (Deertongue grass); *Panicum virgatum* (Switchgrass): *Trisacum dactyloides* (Gama grass), and *Secale cereale* (Annual rye). Also, a Southeast Wildflower mix was applied throughout the project. Five hardwood planting zones were established as follows: Zone 1 – Stream Channel, Zone 2- Stream Bank, Zone 3 – Bottomland Hardwood wetland, Zone 4 – Swamp Wetland, and Zone 5- Upland fringe. Livestakes were installed along the newly constructed channel (approx. 175') within Zone 2. They were planted randomly spaced approximately 3 feet apart and differed in sizes ranging from .25" to 2" in diameter and 2' to 3' in length. Further livestaking may be necessary as the new stream channels stabilize. Zone 3 –5 consists of bareroot seedlings and 1 gallon containerized plants, which were planted randomly 3' to 12' apart throughout the project.

Table I. Project Mitigation Structure and Objectives Table

Project Segment	Mitigation Type	Approach	Linear Footage or Acerage	Stationing	Comment
Stream W Prong	Р	-	341	10 + 00 - 14 + 00	Western Prong as it enters the site
Stream W Prong	E1		596	14 + 00 - 19 + 00	Western Prong between Preservation Area and Restoration Area
Stream	R	P1	3465		Remainder of Site is Restoration (88%)
Wetland	R	-	6.6		Project is 83% restoration
Wetland	E	_	2.7		Stream Enhancement Area is bordered by Wetland Enhancement, Several other enhancement areas exist

Table II. Project Activity and Reporting History

Activity or Report	Calendar Year of Completion or Planned	Actual
	Completion	Completion
		Date
Restoration Plan	October 2005	March 2006
Construction	October 2006	March 2006
Temporary /Permanent	October 2006	March 2006
seeding		
Bareroot Plantings	November 2006	March 2006
Containerized Plantings	November 2006	June 2006
Mitigation Plan	December 2006	August 2006
Year 1 Monitoring	December 2007	October 2006
Year 2 Monitoring	December 2008	December 2007
Year 3 Monitoring	December 2009	November 2008
Year 4 Monitoring	December 2010	
Year 5 Monitoring	December 2011	

Table III. Project Contacts

Table III. Troject Contacts	
Project Manager	
Mid-Atlantic Mitigation, LLC	1960 Derita Road
	Concord, NC 28027
	Rich Mogensen (704) 782-4133
Designer	
Kimley-Horn and Associates Inc.	4651 Charlotte Park Dr
	Suite 300
	Charlotte, NC 28217
	Will Wilhelm (704) 333-5131
Construction Contractor	
Earthwork Inc.	343 Chapman Drive
	Sanford, NC 27330
	Dan Wood (919) 718-6812
Planting & Seeding Contractor	
Carolina Silvics	908 Indian Trail Road
	Edenton, North Carolina 27932
	Dwight McKinney (252) 482-8491
Seed mixes provided by IKEX	
Nursery Stock provided by Native	
Roots Nursery (Formerly Southern	
Shade)	
Monitoring Performers	
Mid-Atlantic Mitigation, LLC	1960 Derita Road
	Concord, North Carolina 28027
	Christine Cook (704) 782-4140

Table IV. Project Background

Project Background Table	
Project County	Cumberland
Drainage Area	2.6 square miles
Drainage Cover Estimate (%)	10%
Physiographic Region	Coastal Plain
Ecoregion	45a Southern Inner Piedmont
Wetland Type	Palustrine, Forested, Broad-leaved
	Deciduous
Cowardin Classification	PFO1Fh
Dominant soil types	Johnston Loam
Reference site ID	UT to Cross Creek
USGS HUC for Project and Reference	03030004
NCDWQ Sub-basin for Project and Reference	03-06-15
% of project easement fenced	0 – Urban site surrounded by private
	residence

3.0 PROJECT CONDITION AND MONITORING RESULTS

3.1 VEGETATION ASSESSMENT

3.1.1 Soil Data

Table V. Preliminary Soil Data

Series	Max Depth (in)	% Clay on Surface	K	T	OM %
Johnston Loam	80	25 - 49	.2017	5	3 - 8

3.1.2 Vegetative Problem Areas

At this time, no vegetative problem areas have been noted or invasive species problems. The site has been stabilized and vegetated with native woody and herbaceous species.

3.1.3 Stem Counts

Zones 1 – 3 of the five planting zones were sampled in three 75 ft by 75 ft plots. The prevalent vegetation should consist of macrophytes that typically are adapted for life in saturated soil conditions. These species should have the ability to grow, compete, reproduce, and persist in anaerobic soil conditions. A reduction in the percentage of nuisance vegetation in wetlands areas with existing vegetation to less than 15% will indicate enhancement of wetland vegetation. For the restoration areas, study plots showing that the composition and density of vegetation in the restoration areas that compares closely to the reference areas will indicate restoration success for vegetation.

The initial success of riparian and wetland vegetation planting will be evaluated based on herbaceous cover as the site is stabilized in the initial growing season. After the year-two growing season, success will be gauged by stem counts of planted species and desirable volunteer species. Stem counts of over 320 trees per acre after 3 years, 288 trees per acre after 4 years, and 260 trees per acre after 5 year will be considered successful. Photos taken at established photo points should indicate maturation of riparian vegetation community.

On July 30th, 2008, the third year-vegetative monitoring was performed on the established vegetative plots.

Exhibit Table VI: Stem Counts for Each Species Arranged by Plot									
Plots		Initial	Year 1	Year 2	2008	Year 3	Survival		
Species	1	2	3	Totals	Totals	Totals	Initial	Totals	%
Betula nigra	4	12		18	18	15	18	16	89%
Chamaecyparis thyoides				8	2		8		0%
Cornus ammomum		2	1	10	9	2	10	3	30%
Fraxinus pennsylvanica	20		14	35	35	43	35	34	97%
Liriodendron tulipifera				1			1		0%
Magnolia virginiana		3					3	3	100%
Nyssa aquatica	5	1		6	6	8	6	6	100%
Nyssa biflora	5			8	8	6	8	5	63%
Nyssa slyvantica	5	4	1	10	10	10	10	10	100%
Quercus bicolor		3					3	3	100%
Quercus nigra				2			2		0%
Quercus phellos			1	1	1	1	1	1	100%
Quercus shumardii				1	1		1		
Taxodium distichium	7	10	8	25	21	24	25	25	100%
Totals	46	35	25	125	111	109	131	106	85%

Table VII. Stems Per Acre		
	SPA	SPA w/ volunteers
Plot 1	356	441
Plot 2	271	332
Plot 3	194	309
Total	274	361

3.1.4 <u>Vegetation Assessment Summary</u>

Vegetation success will be defined as tree survival to meet 320 stems per acre after 3 years and 260 stems per acre after 5 years inside the permanent vegetative plots and herbaceous cover evaluated with photos showing 75% coverage, after 5 years.

Survival of many species is 100% after 3 years with additional volunteers of many desirable species. Volunteer species include Alnus serrulata, Cephalanthus occidentalis, Platanus occidentalis, and Salix nigra, none of these species were planted because of the large available seed source and excellent growing conditions of the site. Volunters of planted species include Betula nigra and Fraxinus pennsylvanica. A large colony of Alders still exists in Plot 3, this dense community is typical of Alders and will be managed and thinned to a manageable number of individuals, approximately 10 to 15. On March 24th, 2008 a small replant, as requested by EEP after the 2007 monitoring report, was done. 55 Magnolia virginiana, 45 Quercus bicolor, and 35 Taxodium distichum, for a total of 135 plants were installed in the areas around and between Plots 2 and 3. Based on sampling, the site as a whole shows an average of 274 stems per acre of planted stems and 361 stems per acre when healthy, desirable volunteers are included, only 10 Alder individuals in plot 3 were used in this calculation. The site demonstrates 85 percent survival of planted stems. The community is diverse and rich with healthy volunteers. Using the adaptive management approach for this site; the contribution of healthy, desirable volunteers will be considered before any decisions are made on additional plantings. This site was not over planted during initial planting as would typically be done due to a predicted high rate of colonization of desirable volunteer species. While the planted stem count is still below the 3 year goal of 320 stems the contribution of desirable volunteers is significant and places the stems per acre calculation well above the 320 goal. The high survival of volunteers species and individuals indicates that the adaptive management approach is working.

In Appendix A, the vegetative survey data tables show the actual counts of each species found per plot. The herbaceous cover plant community was monitored in a 1 m by 1 m square at one corner of each plot. Herbaceous cover for the site is at or close to 100%.

3.2 CHANNEL STABILITY ASSESSMENT

3.2.1 Cross Sections

The site as a whole has shown no significant change since as-built documents were submitted. The Cross Section plots are located in Appendix B. The small problem area where there was minor settling occurring on the left bank of the run between Cross Sections 1 and 2 appears to be stabilizing. Vegetation has finally gotten a foothold in this area. Cross Section 2 was built as a constructed riffle using stone debris from the removal of the dam. The stream bank sub-surfaces and stream bed were formed with some stone debris. The banks were graded to the typical designed cross sections. The

stream bed is made of stone to stabilize the riffle and to increase bed form diversity/ habitat of the riffle for this section as well as acting as grade control. The stream channels at Cross Sections 3 through 10 are less defined then Cross Sections 1 and 2. MAM and KHA tried to select deep still areas for pools and chose shallower areas of swift running water for the riffle cross sections. Observations for each Cross Section follow.

- Cross Section 1 No significant changes, Thalweg right of center.
- Cross Section 2 There may be some scouring present along the left bank and a small sand bar may be developing, thalweg right of center.
- Cross Section 3 Channel appears to be narrowing, thalweg right of center.
- Cross Section 4 Channel has deepened slightly, thalweg left of center.
- Cross Section 5 Channel shows narrowing and deepening trend, thalweg left of center.
- Cross Section 6 Channel has deepened slightly, thalweg right of center.
- Cross Section 7 Channel has deepened slightly, thalweg left of center.
- Cross Section 8 Deposition appears to have occurred in this pool along left bank, thalweg right of center.
- Cross Section 9 Channel shows deepening and widening trend, thalweg left of center, scouring may be present along right bank.
- Cross Section 10 Channel indicates a potential right bank failure may have sloughed into the channel, thalweg left of center.

3.2.2 Bank Full Events

The Crest Stage Gage (CSG) located at the southern end of the site below the confluence of the East and West Prongs was reset and indicated bankfull conditions on January 24th, 2008 and July 29th, 2008. In order for the CSG to indicate bankfull conditions the stream gage north of the site in the reference area must register a peak of approximately 24 inches or higher and rainfall onsite as recorded by the raingage near the CSG must be significant (exceeding one inch combined) for two consecutive days. The most likely event preceding the January reading was December 15 and 16, 2007 and for the July reading, June 14 and 15, 2008. Rainfall amounts and stream gage peaks are shown in the table below. On November 20th at the time of the 2008 monitoring survey work the CSG was inspected and the cork was found to be waterlogged without a clear bankfull indicator line, however indicating a bankfull event and qualifying storm event occurred on November 14th and 15th as shown below.

Table VII. Potential Bankfull Events

Date	Stream Gage	Onsite Rainfall	Comments
12/15/2007	16.21	0.98	
12/16/2007	23.92	0.42	Most likely bank full event CSG
2/18/2008	22.46	1.33	
3/7/2008	24.62	0.87	
3/15/2008	31.45	1.08	
4/5/2008	23.29	1.78	
6/14/2008	18.95	0.7	
6/15/2008	24.08	0.76	Most likely bank full event CSG
7/8/2008	29.24	0.03	
7/9/2008	21.23	0.02	
7/10/2008	24.86	0.01	Rainfall offsite, upstream
8/27/2008	35.23	0	Rainfall offsite, upstream
9/6/2008	36.83	0	Rainfall offsite, upstream
11/14/2008	20.93	0.86	
11/15/2008	27.73	0.56	Most likely bank full event CSG

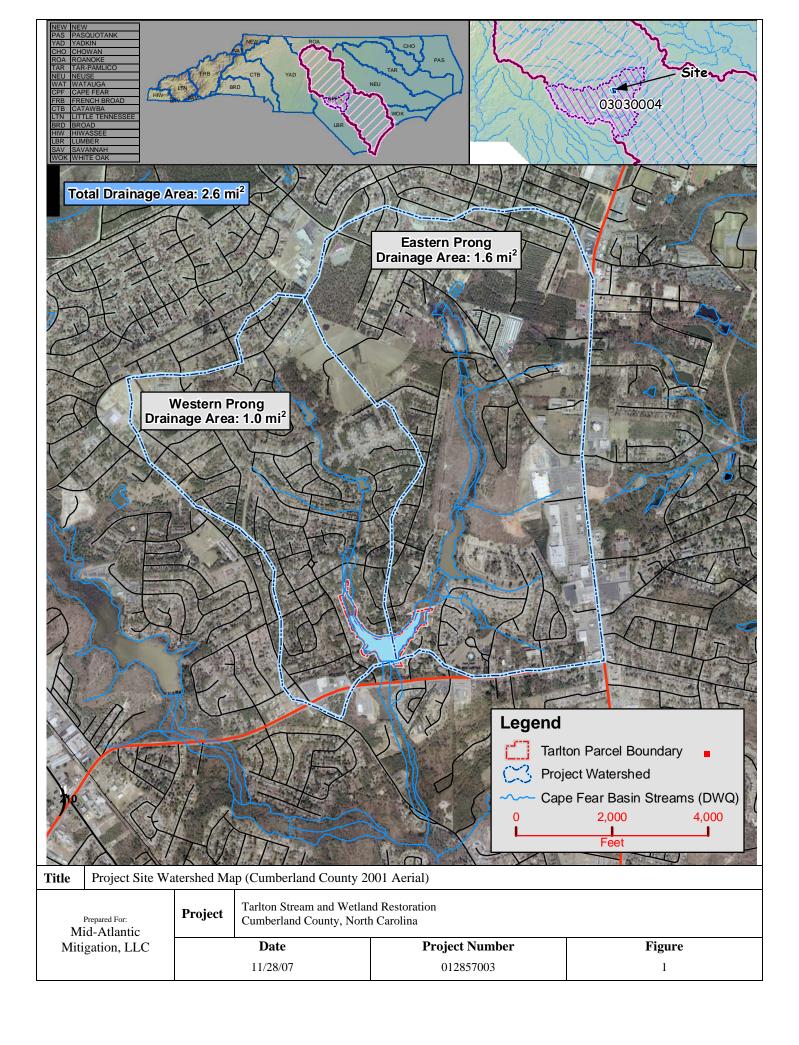
3.2.3 **Longitudinal Profiles**

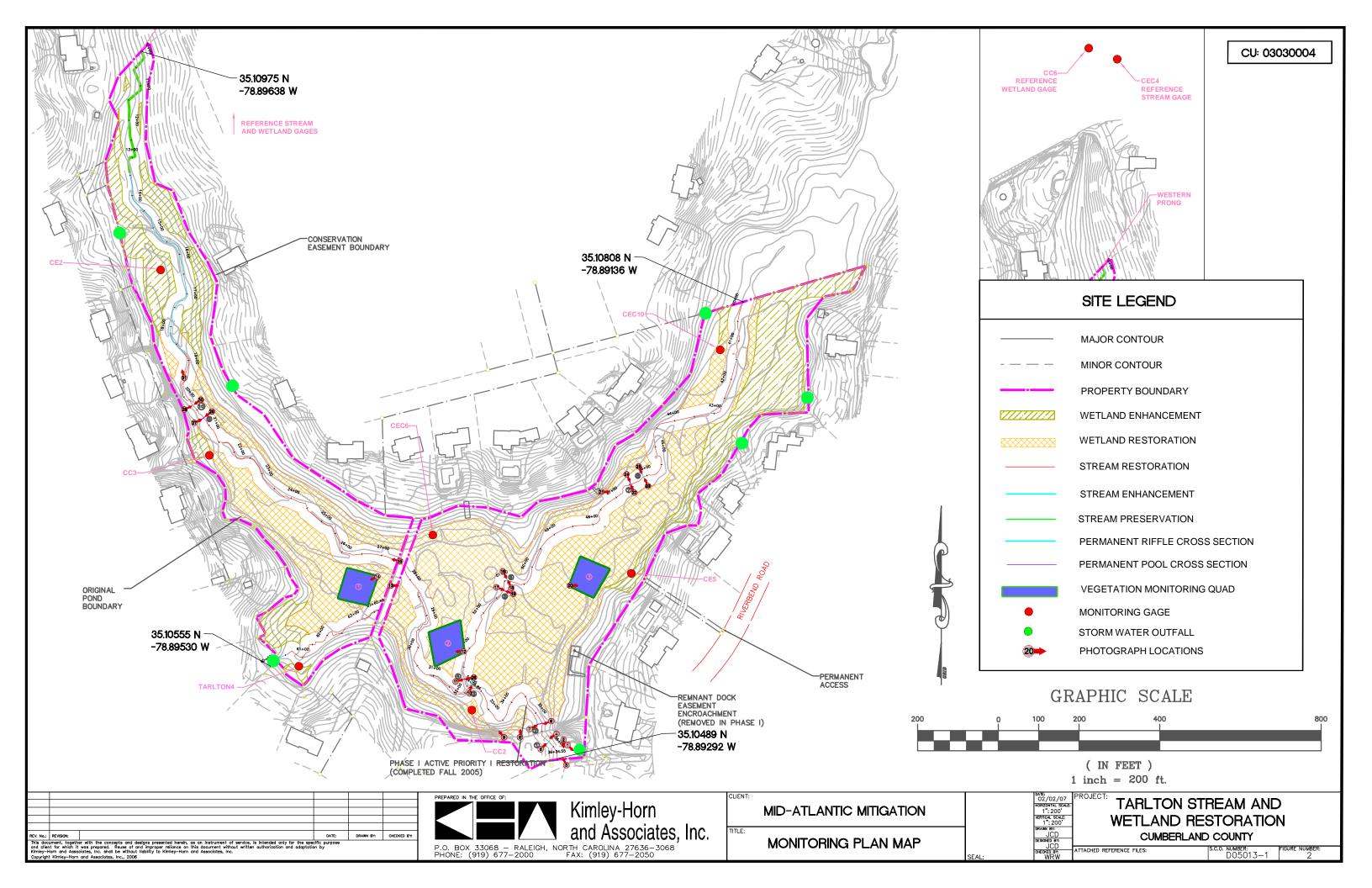
There is currently only one constructed riffle on the project, which is located at the site of the original dam and corresponds with Cross Section 2. This riffle was constructed with large cobbles and small boulders found on site. A pebble count was done in 2006 which demonstrates the substantial size of the bed material, and has not been repeated. There is currently no smaller bed material present and only a small representative sample was taken in 2006. The site has shown no significant change since as-built documents were submitted. Profiles of the Eastern and Western Prongs show similar trends. Several obvious pools (profile graphs in Appendix C) have formed and many continue to deepen particularly on the upper portion of the Eastern Prong. Riffle areas appear to be becoming more defined with longer stretches of similar elevation followed by pools or series of pools. The current stream morphology is common and typically stable in low-gradient coastal plain systems.

3.2.4 Wetland Assessment

Seven ground water gages are distributed around the project along with one reference gage off site, but not far upstream on the Western Prong. Graphs showing the 2008 data have been prepared and are included in Appendix E. Gage CEC10 showed borderline hydrology and was the only gage on site not to indicate unquestionable jurisdictional hydrology. Gage CEC10 is the northern most gage on the Eastern Prong. Last year, 2007, Gage CC2 showed similar borderline hydrology, but this year easily satisfied wetland requirements. The average growing season for Cumberland County and the Fayetteville area is 213 days between March and October. Therefore, ten percent of the growing season is approximately 21 days. The site as a whole did not seem to be overly affected by drought conditions experienced in this part of the state.

Table IX. Success Criteria Attainment


Well ID	Well Hydrology Threshold Met?	Mean	Vegetation Plot ID	Vegetation Survival Threshold Met?	Mean
CC2	Υ		Plot 1	Υ	
CC3	Υ		Plot 2	N (Y w/ vols)	33%
CEC6	Υ		Plot 3	N (Y w/ vols)	
CE2	Υ				
CE5	Υ	86%			100%
CEC10	N	0070			w/
Tarlton 4	Υ				vols
CC6	Y				


Table X. Wetland Criteria Attainment

Well ID	Well Hydrology Threshold Met?	Total days w/ Jurisdictional Hydrology	Percent of Growing Season w/ Jurisdictional Hydrology
CC2	Υ	31	14%
CC3	Υ	70	32%
CEC6	Υ	39	18%
CE2	Υ	70	32%
CE5	Υ	360	100%
CEC10		10	5%
Tarlton 4	Υ	53	24%
	_		
CC6	Υ	360	100%

3.2.5 Site Stability Assessment Summary

Overall, the stream channel has developed and stabilized well. The herbaceous vegetative cover has also developed a healthy and diverse community. The planted trees and shrubs have also done very well and are supplemented by a robust existing buffer community which provides seed source for volunteers well suited to the current site conditions. Ground water wells demonstrate favorable trends and jurisdictional wetland hydrology. A small beaver dam was removed in November. Beaver activity on site seems to pick up in the fall each year. A beaver contractor is actively monitoring the site on a quarterly basis.

APPENDIX A. Vegetation Raw Data

Exhibit Table VI: Stem Counts for Each Species Arranged by Plot									
Species	1	Plot:	s 3	Initial Totals		Year 2 Totals			Survival %
Betula nigra	4	12		18	18	15	18	16	89%
Chamaecyparis thyoides				8	2		8		0%
Cornus ammomum		2	1	10	9	2	10	3	30%
Fraxinus pennsylvanica	20		14	35	35	43	35	34	97%
Liriodendron tulipifera				1			1		0%
Magnolia virginiana		3					3	3	100%
Nyssa aquatica	5	1		6	6	8	6	6	100%
Nyssa biflora	5			8	8	6	8	5	63%
Nyssa slyvantica	5	4	1	10	10	10	10	10	100%
Quercus bicolor		3					3	3	100%
Quercus nigra				2			2		0%
Quercus phellos			1	1	1	1	1	1	100%
Quercus shumardii				1	1		1		
Taxodium distichium	7	10	8	25	21	24	25	25	100%
Totals	46	35	25	125	111	109	131	106	85%

Stems per Acre

Stems per Acre w/ Voluteers

Plot 1	57	441	spa	
Plot 2	43	332	spa	
Plot 3	40	309	spa	
	140	1082		
	_	3	=	361

274

Table VII. Stems Per Acre			
			SPA w/
		SPA	volunteers
Plo	ot 1	356	441
Plo	ot 2	271	332
Plo	ot 3	194	309
Te	otal	274	361

Taritor	Tarlton- Vegetation plot #1					
	Number of	Planted Sp	ecies/Numb	er of Volu	inteers	
Trees/ Shrubs	2006	2007	2008	2009	2010	
Alnus serrulata	/3	/1	/2			
Betula nigra	5	3	4			
Cephalanthus occidentalis	/1					
Chamaecyparis thyoides	1					
Cornus amomum	4					
Fraxinus pennsylvanica	20	27	20/9			
Liriodendron tulipifera						
Nyssa aquatica	5	5	5			
Nyssa biflora	6	6	5			
Nyssa slyvantica	5	5	5			
Quercus falcata var. pagodafolia						
Quercus michauxii						
Quercus nigra						
Quercus phellos						
Quercus shumardii						
Taxodium distichium	7	8	7			
Total Planted	53	54	46			
Voluteers	4	1	11			

100 % Volunteers

Herbacous Vegetation	2006	2007	2008	2009	2010
Juncus spp.	Dominant	Dominant	Dominant		
Polygonum spp. (tearthumb)	Sub dominant				,
Eupatorium capillifolium	Common				

Plot Size: 5625 ft²

Stems/plot	=	Stems/ac
Sq ft/plot		Sq ft/acre
46		356
5625		43560
57		441.408
5625		43560

Tar	lton- Vegeta	tion plot # 2	2		
Trees/ Shrubs	Number	of Species p	lanted/Numl	ber of Volui	nteers
	2006	2007	2008	2009	2010
Alnus serrulata					
Betula nigra	12	12/4	12/6		
Cephalanthus occidentalis	/2				
Chamaecyparis thyoides	1				
Cornus amomum	1	1/2	2		
Fraxinus pennsylvanica	1				
Liriodendron tulipifera					
Magnolia virginiana			3		
Nyssa aquatica	1	1/2	1/1		
Nyssa biflora					
Nyssa slyvantica	4	4	4/1		
Platanus occidentalis					
Quercus bicolor			3		
Quercus falcata var. pagodafolia					
Quercus michauxii					
Quercus nigra					
Quercus phellos					
Quercus shumardii					
Salix nigra					
Taxodium distichium	8	10	10		
Total Planted	28	29	35		
Volunteers	2	7	8		

100 % Volunteers

Herbacous Vegetation	2006	2007	2008	2009	2010
Eupatorium capillifolium	Sparse				
Juncus spp.	Dominant		Dominant		
panicum clandestinum	Common				
polygonum pensylvanicum	Dominant				
polygonum spp. (smartweed)	Common	Common	Common		
Polygonum spp. (tearthumb)	Common	Common	Common		
sedge sp.	Sparse				

Plot Size: 5625 ft²

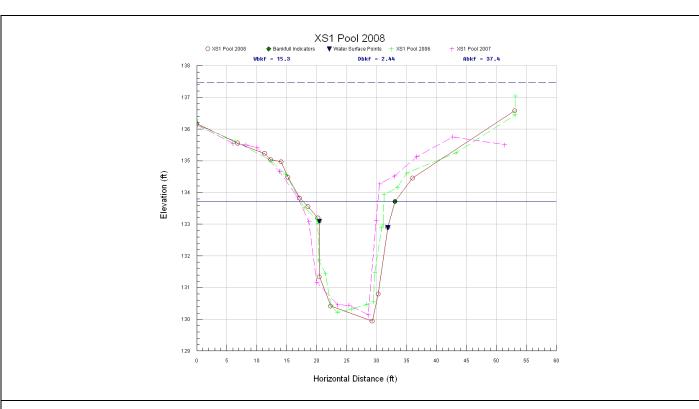
Stems/plot	=	Stems/ac
Sq ft/plot		Sq ft/acre
35		271
5625		43560
43		332.992
5625		43560

Tarlton- Vegetation plot # 3						
Trees/ Shrubs	Number of \$	Species p	lanted/Nun	nber of Vol	unteers	
	2006	2007	2008	2009	2010	
Alnus serrulata	/5	/5	/10			10
Betula nigra	1					
Cephalanthus occidentalis		/1	/1			10
Chamaecyparis thyoides						
Cornus amomum	4	1	1			
Fraxinus pennsylvanica	14- (2 Stressed)	16	14			
Liriodendron tulipifera						
Nyssa aquatica						
Nyssa biflora	2					
Nyssa slyvantica	1	1	1			
Platanus occidentalis		/1	/1			10
Quercus falcata var. pagodafolia						1
Quercus michauxii						
Quercus nigra						
Quercus phellos	1	1	1			
Quercus shumardii	1					
Salix nigra	/1	/1	/3			10
Taxodium distichium	6	6	8			
Total Planted	30	25	25			
Volunteers	6	8	15			1

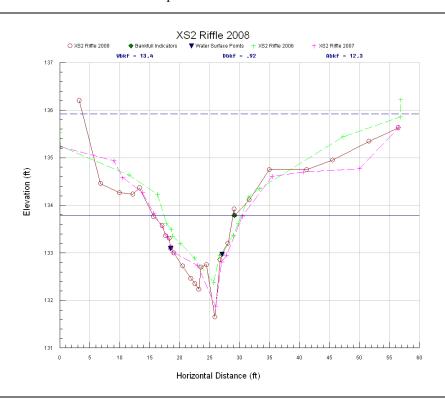
100 % Volunteers

100 % Volunteers

00 % Volunteers

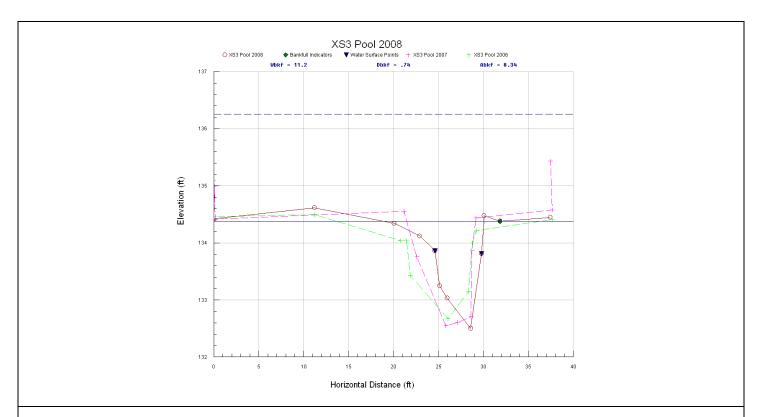

100 % Volunteers

Plot Size: 5625 ft²

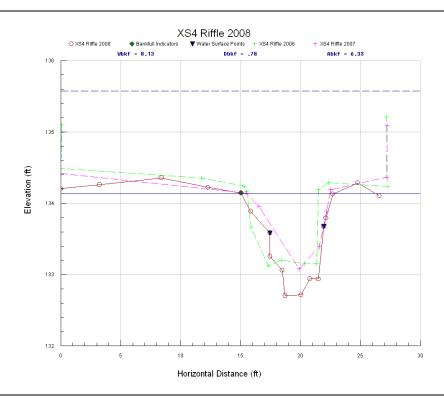

Herbacous Vegetation	2006	2007	2008	2009	2010
Eupatorium capillifolium	Dominant				
Juncus spp.	Dominant	Dominant	Dominant		
Lycopus virginicus	Sparse				
Mikania scandens	Sparse				
Polygonum spp. (tearthumb)	Dominant	Dominant	Dominant		
unidentified	Sparse				

Stems/plot	=	Stems/ac
Sq ft/plot		Sq ft/acre
0.5		404
25		194
5625		43560
40		309.76
5625		43560

APPENDIX B. Cross Sections

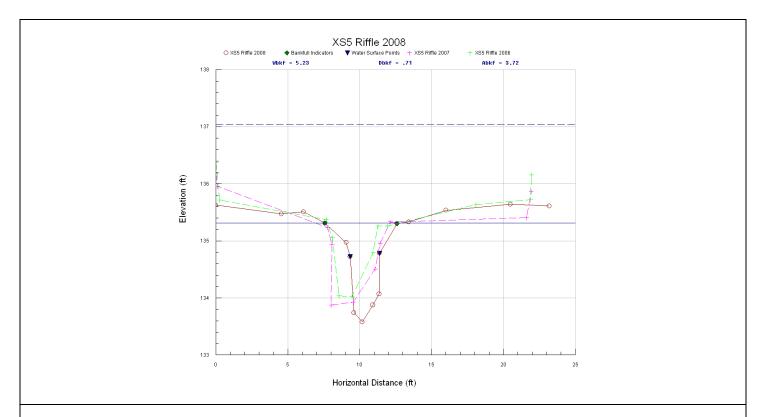


Graph 1: Cross Section 1 Pool

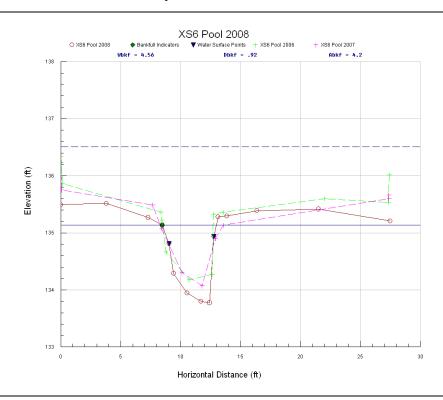


Graph 2: Cross Section 2 Riffle

Title	itle Cross Section Survey Graphs					
Project Tarlton Stream and Wetland Restoration Project Cumberland County, North Carolina						
Mitigation, LLC Date Project Number		Figure				
			12/9/08	018285006	4	

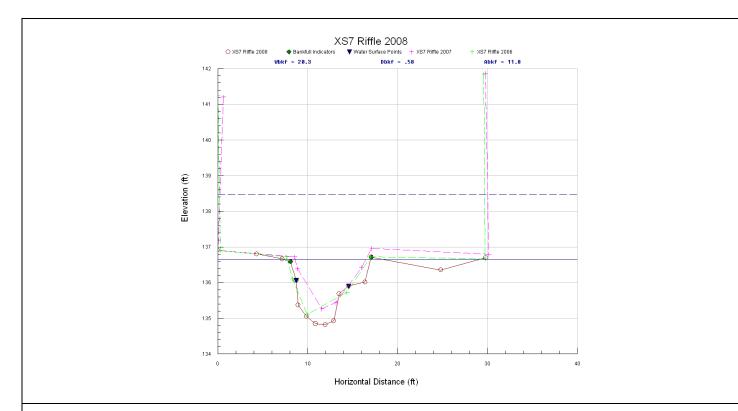


Graph 3: Cross Section 3 Pool

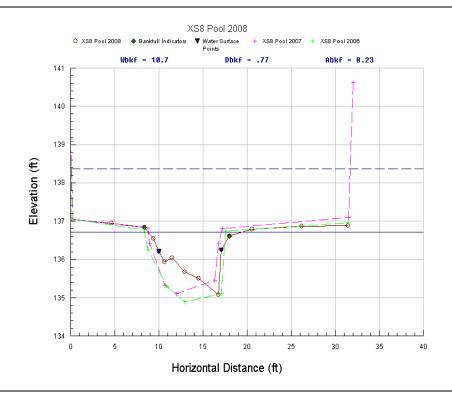


Graph 4: Cross Section 4 Riffle

Title	Cross Section Survey Graphs				
Prepared For: Mid-Atlantic Mitigation, LLC		Project	Tarlton Stream and Wetland Restoration Project Cumberland County, North Carolina		
		Date		Project Number	Figure
		12/9/08		018285006	4a

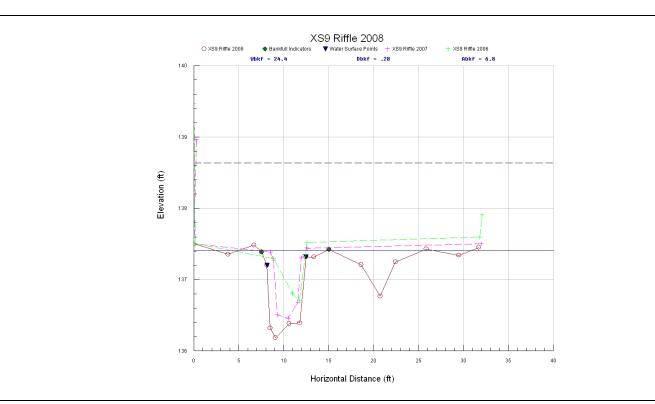


Graph 5: Cross Section 5 Riffle

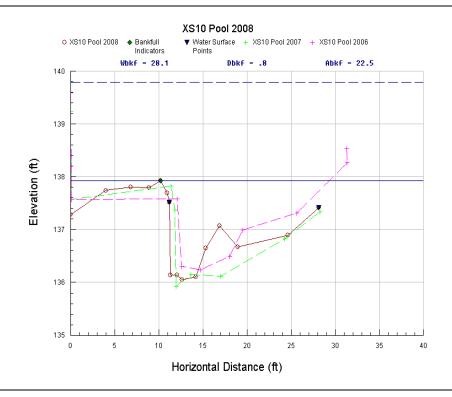


Graph 6: Cross Section 6 Pool

Title	Cross Section Survey Graphs				
Prepared For: Mid-Atlantic Mitigation, LLC		Project	Tarlton Stream and Wetland Restoration Project Cumberland County, North Carolina		
			Date	Project Number	Figure
			12/9/08	018285006	4b

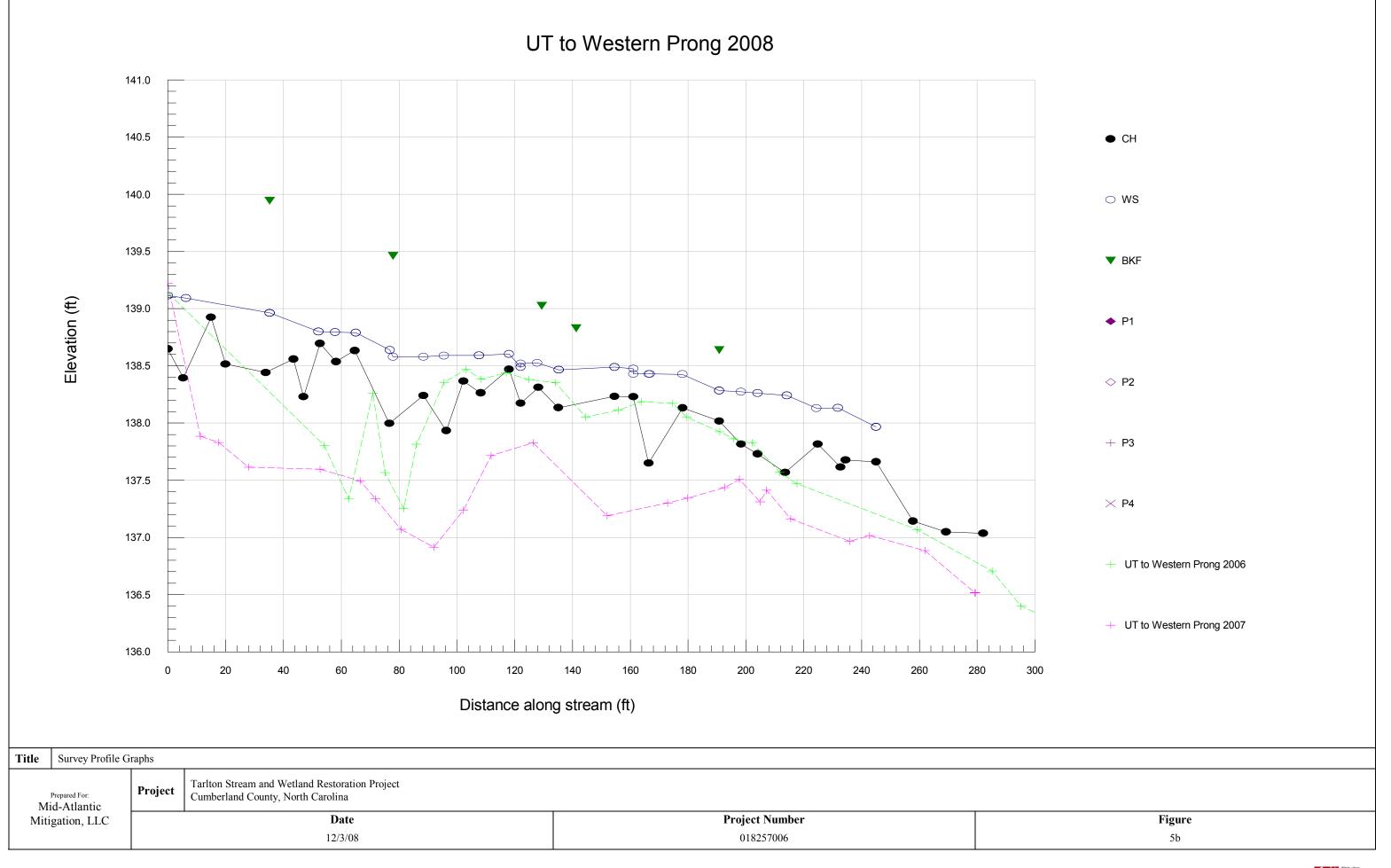


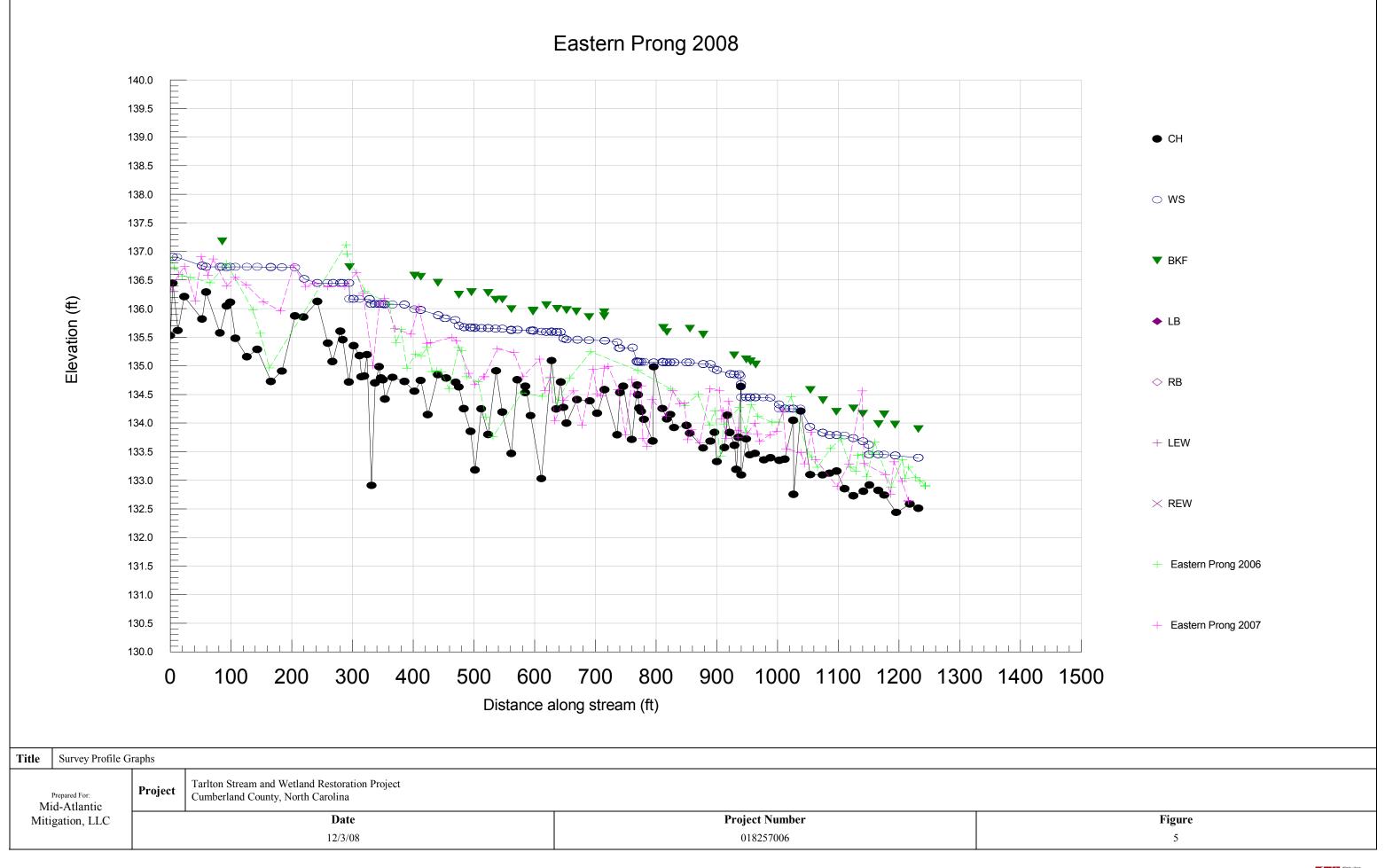
Graph 7: Cross Section 7 Riffle

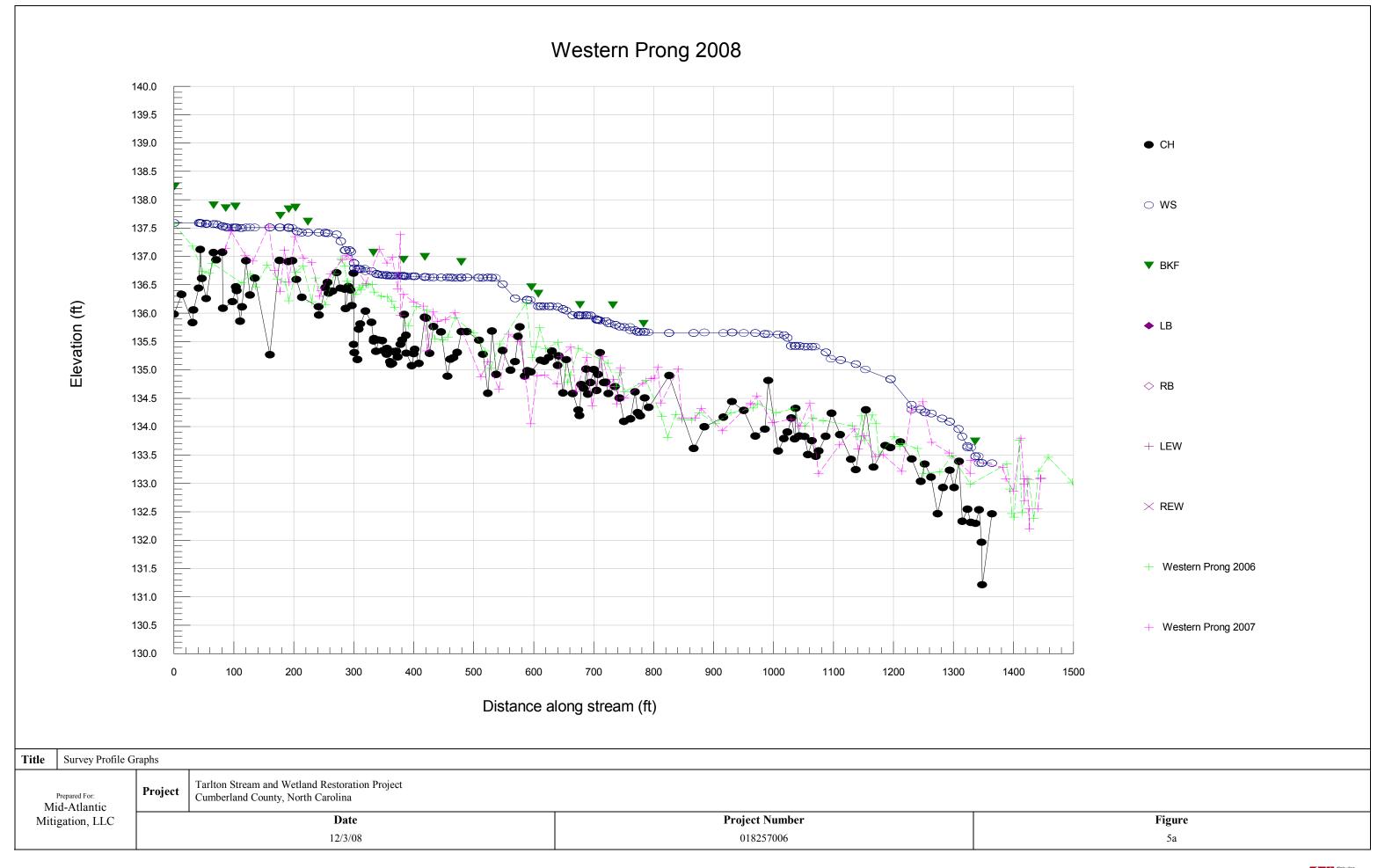


Graph 8: Cross Section 8 Pool

Title	Cross Section Survey Graphs				
Prepared For: Mid-Atlantic Mitigation, LLC		Project	Tarlton Stream and Wetland Restoration Project Cumberland County, North Carolina		
		Date		Project Number	Figure
		12/9/08		018285006	4c


Graph 9: Cross Section 9 Riffle




Graph 10: Cross Section 10 Pool

Title	Cross Section Survey Graphs				
Prepared For: Mid-Atlantic		Project	Tarlton Stream and Wetland Restoration Project Cumberland County, North Carolina		
Mit	Mitigation, LLC		Date	Project Number	Figure
			12/9/08	018285006	4d

APPENDIX C. Profile Survey

APPENDIX D. Photo Log

Photo Point Log

Photo Point 1

Photo Point 3

Photo Point 5

Photo Point 2

Photo Point 4

Photo Point 6

Photo Point 7

Photo Point 9

Photo Point 11

Photo Point 8

Photo Point 10

Photo Point 12 – Veg Plot 2

Photo Point 13

Photo Point 15

Photo Point 17

Photo Point 14 – Veg Plot 1

Photo Point 16

Photo Point 18

Photo Point 19

Photo Point 21

Photo Point 23

Photo Point 20 – Veg Plot 3

Photo Point 22

Photo Point 24

Photo Point 25

Photo Point 27

Photo Point 29

Photo Point 26

Photo Point 28

Photo Point 30

Photo Point 31

Stormwater Outfall Photo Log

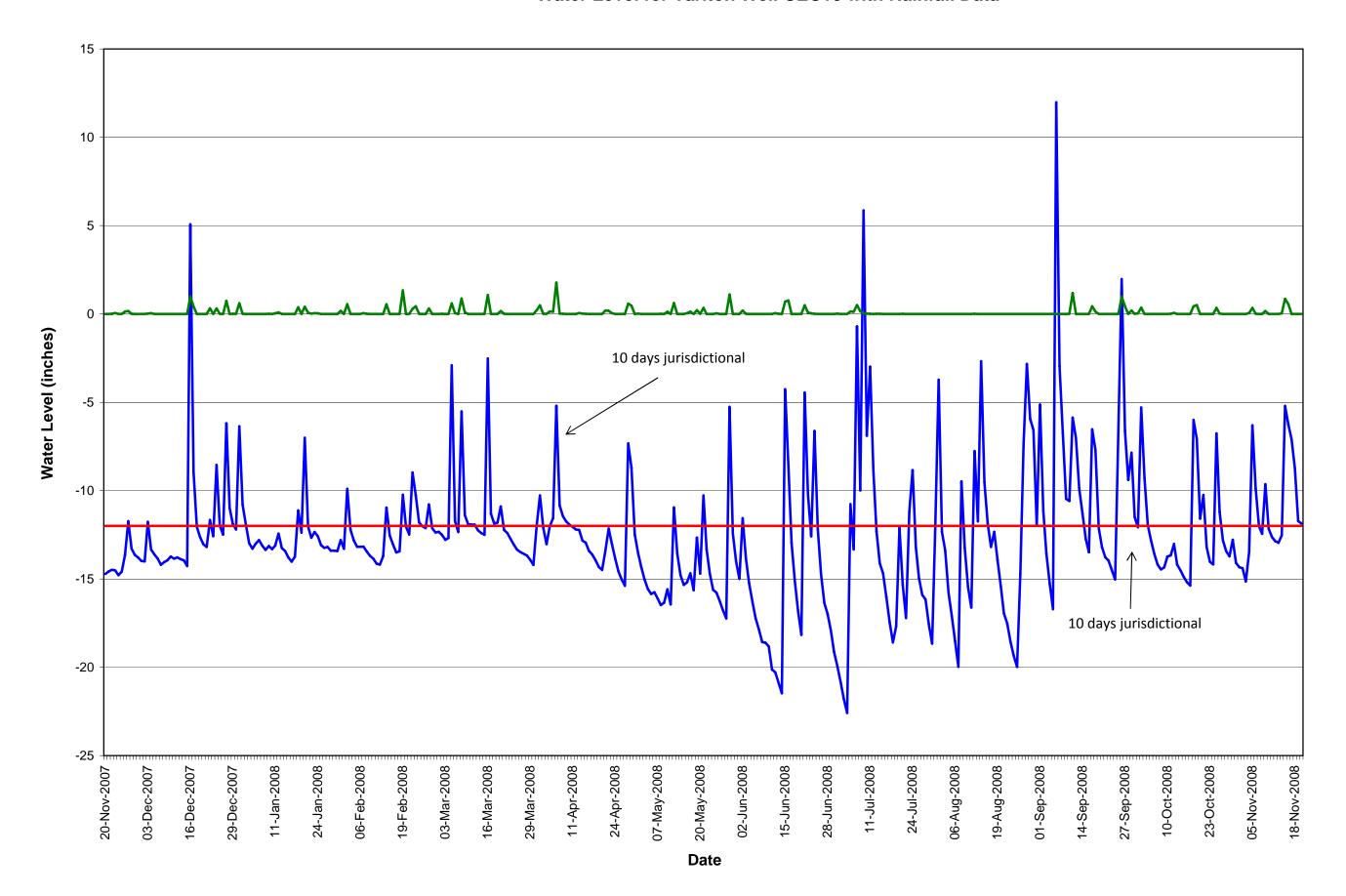
Outfall near Photo Point 1

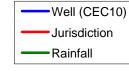
Outfall SE of monitoring well CEC10

Outfall W of monitoring well TARLTON4

Outfall S of monitoring well CEC10

Outfall N of monitoring well CEC10

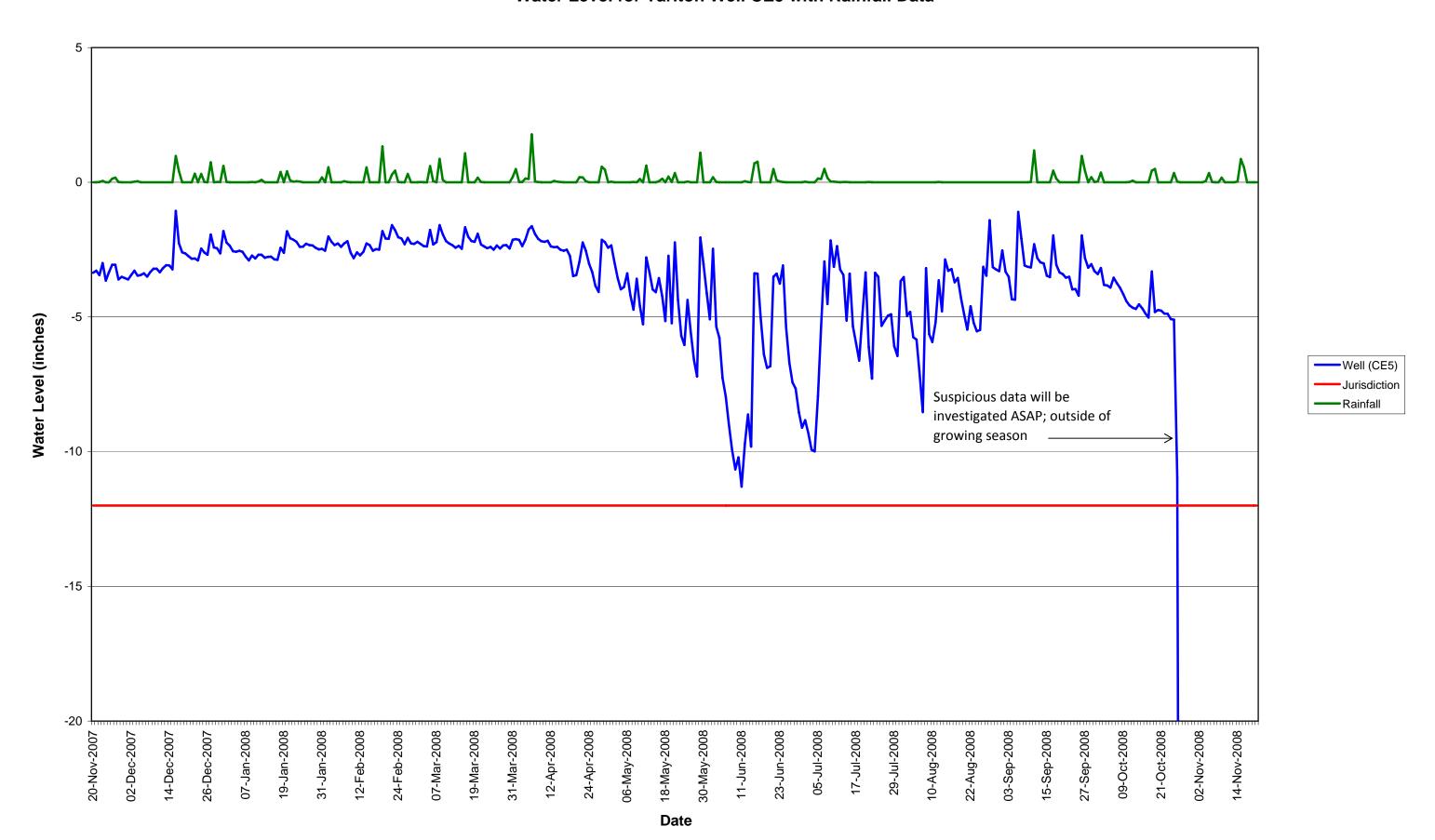

Outfall NNE of monitoring well CC3

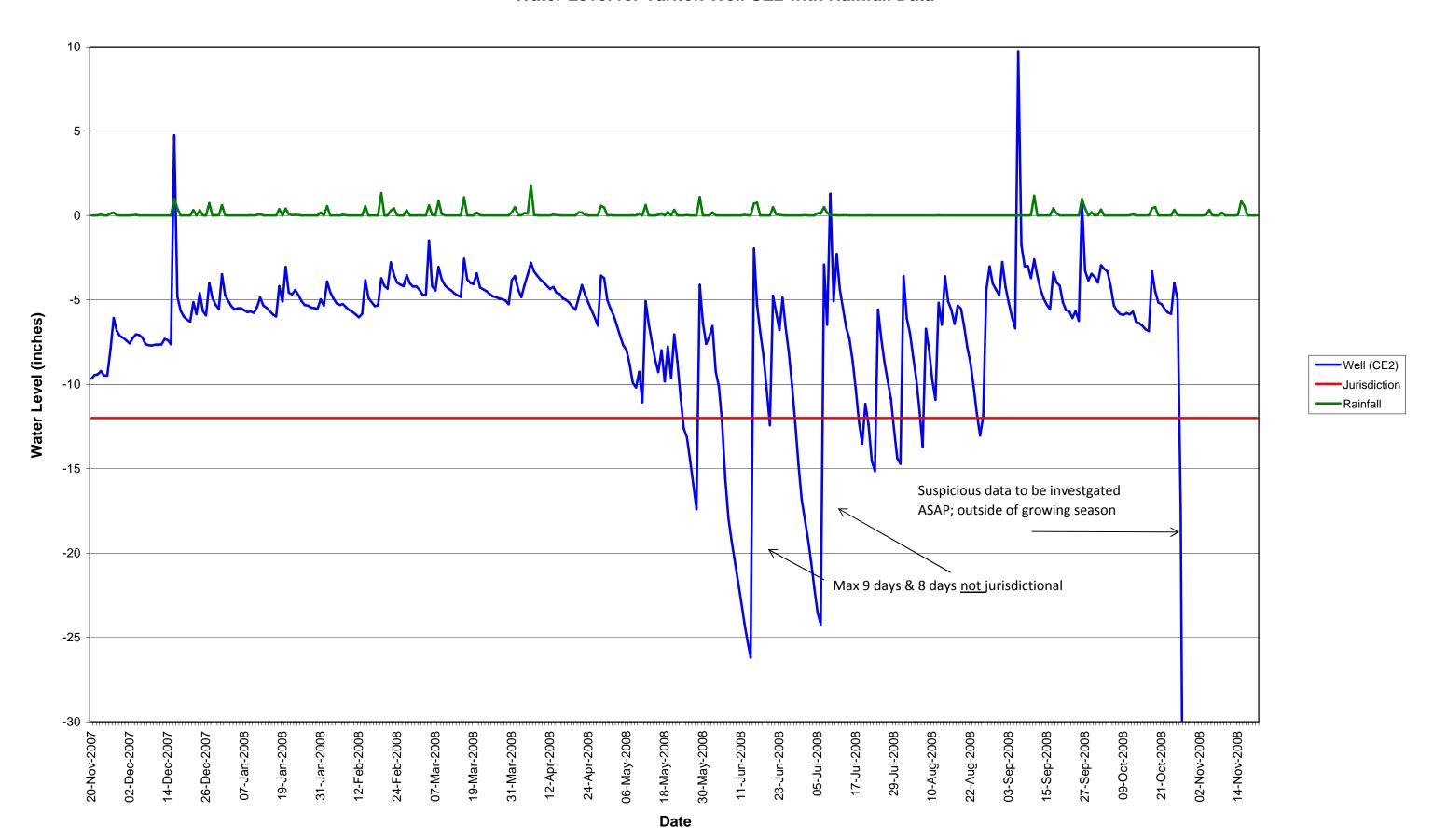


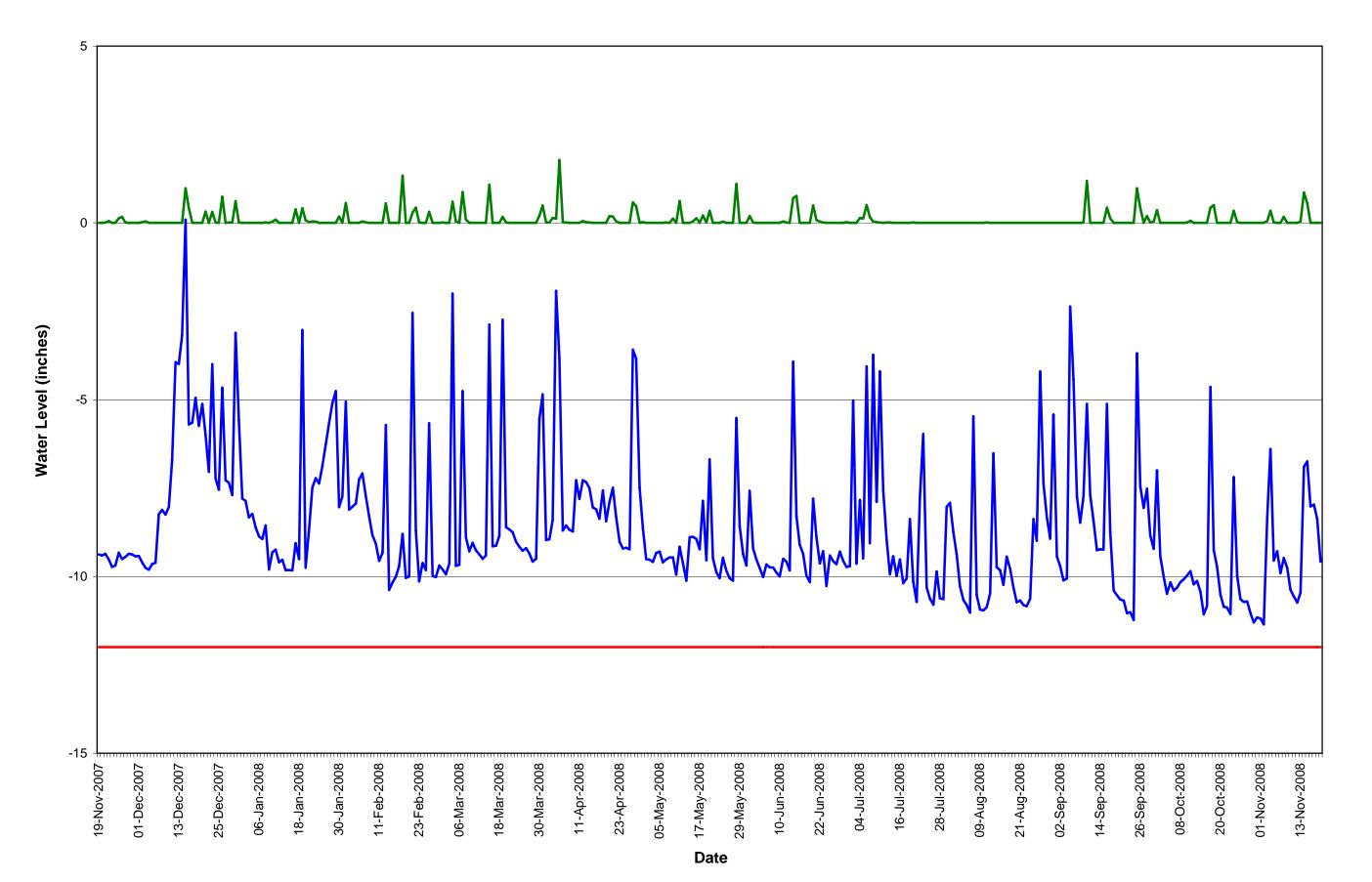
Outfall NW of monitoring well CE2


APPENDIX E. Ground and Surface Water Data Bank Full Event Log Rainfall and Stream Gage Graphs

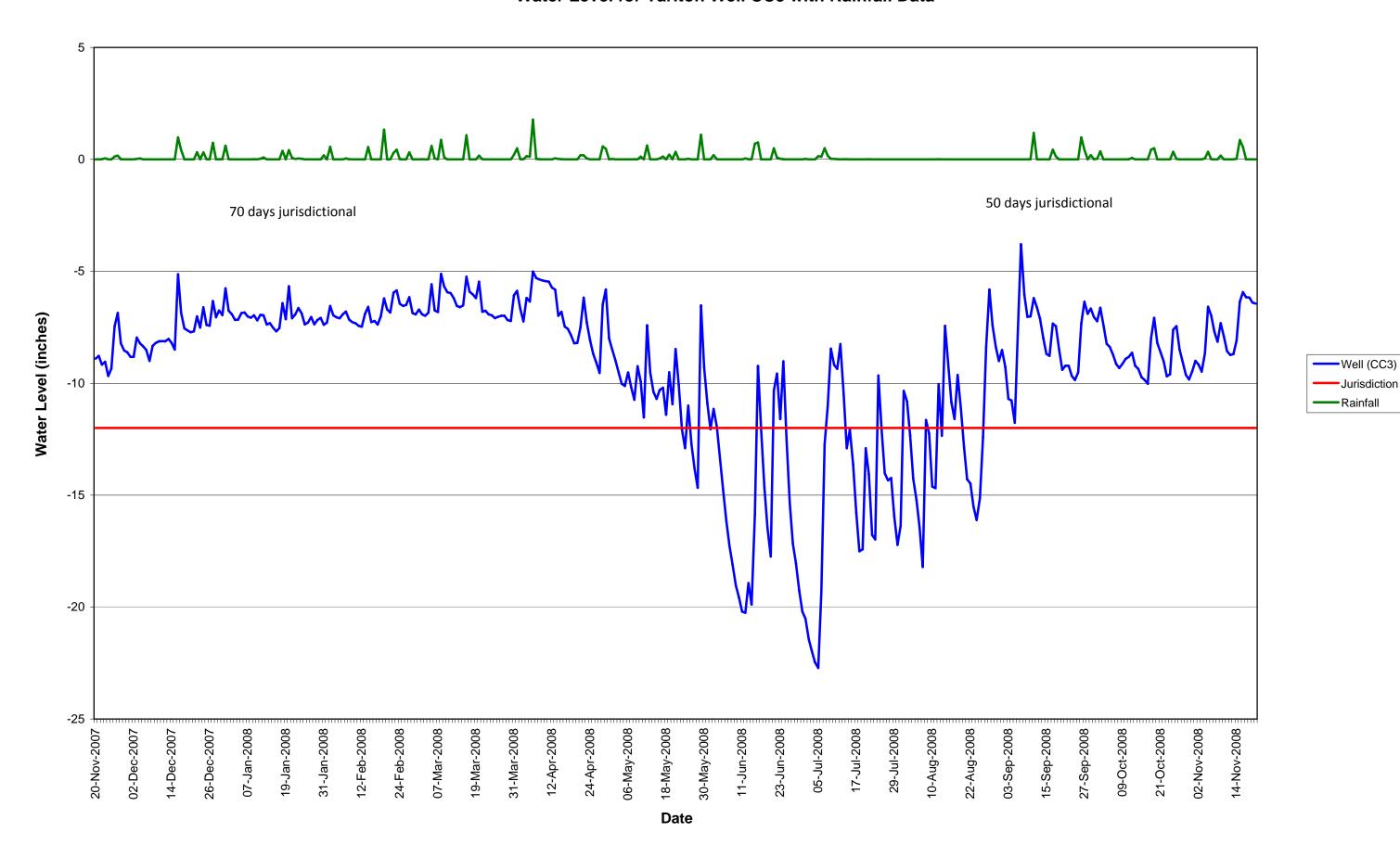
Water Level for Tarlton Well CEC10 with Rainfall Data



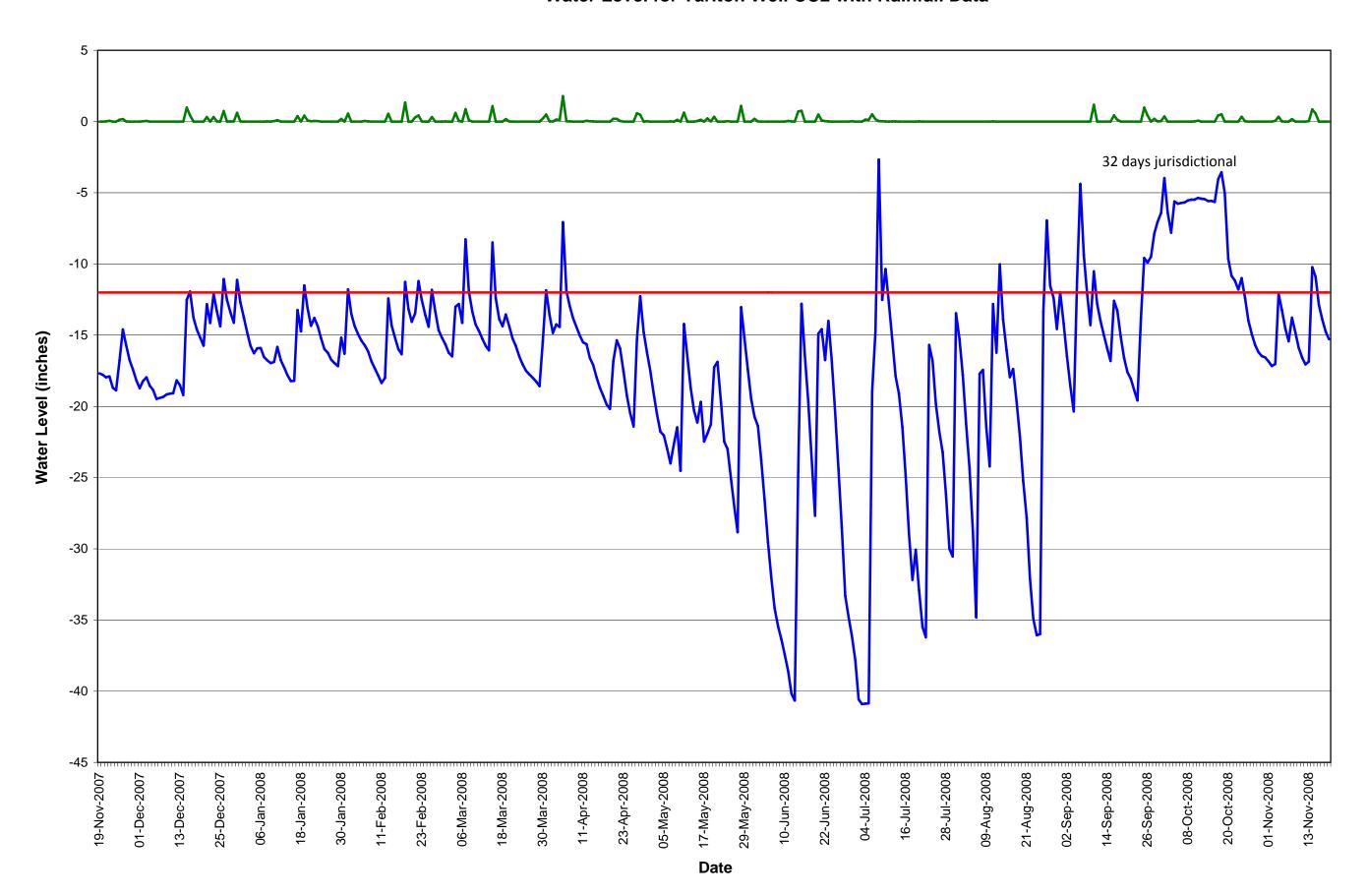

Water Level for Tarlton Well CEC6 with Rainfall Data


Water Level for Tarlton Well CE5 with Rainfall Data

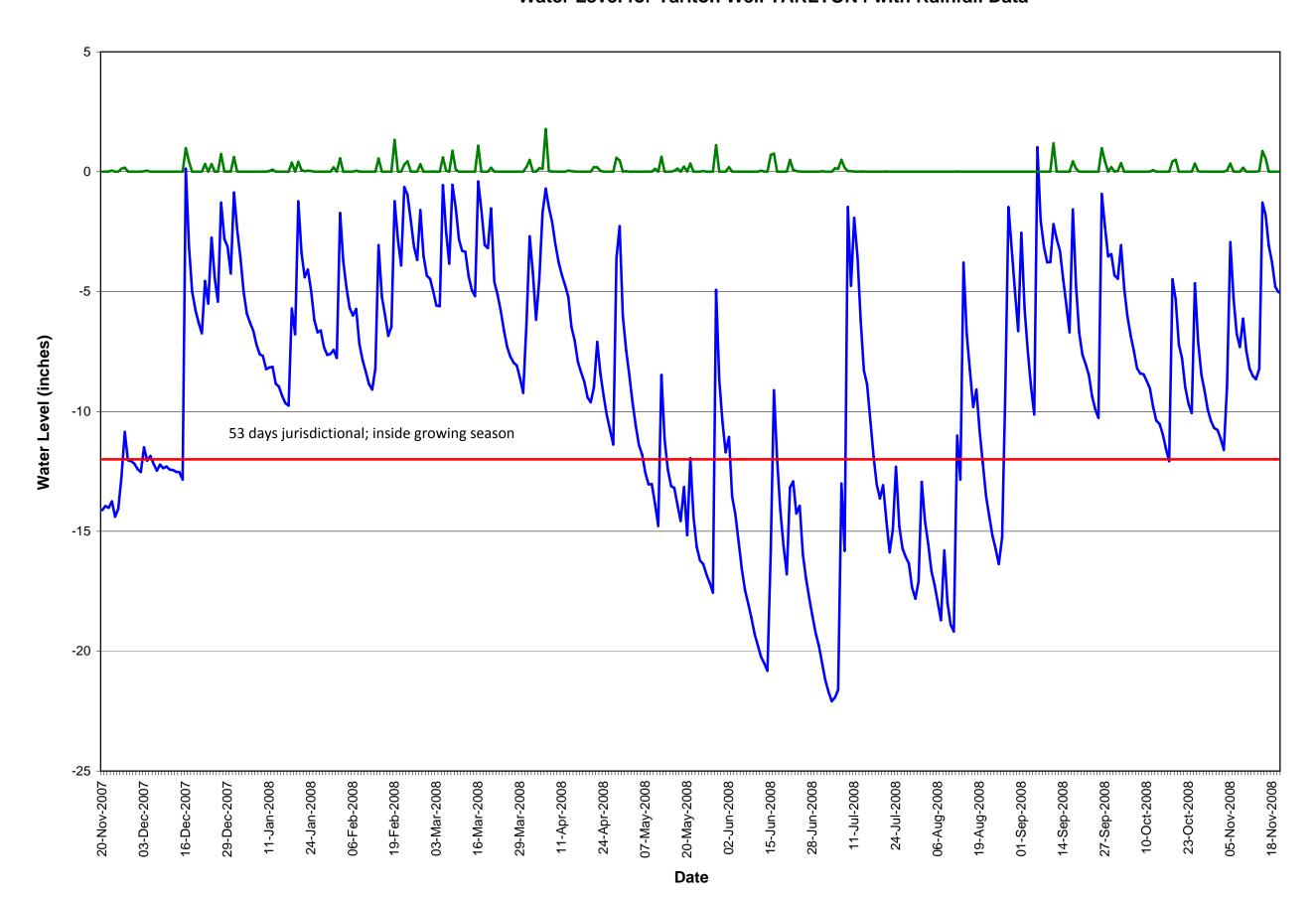
Water Level for Tarlton Well CE2 with Rainfall Data



Water Level for Tarlton Well CC6 with Rainfall Data



Water Level for Tarlton Well CC3 with Rainfall Data

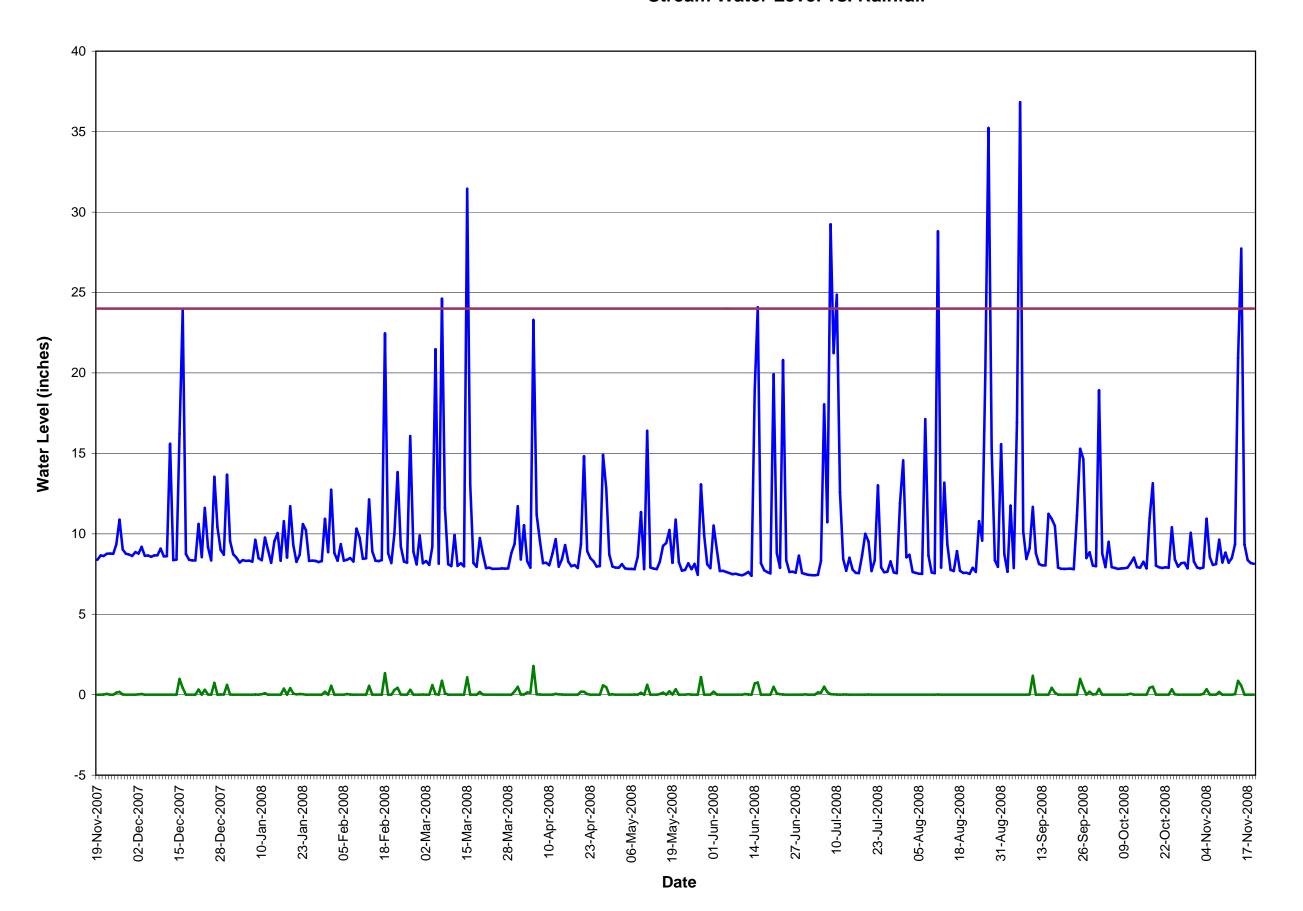


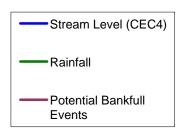
Water Level for Tarlton Well CC2 with Rainfall Data

Well (CC2)JurisdictionRainfall

Water Level for Tarlton Well TARLTON4 with Rainfall Data

Bankfull Events Log




Crest Stage Gage was reset on 1/24/2008 and indicated a bankfull event Crest Stage Gage was reset on 7/29/2008 and indicated a bankfull event

Stream gage peaks of aprox. 24 inches may result in the CSG triggering if rainfall (onsite) is significant

Date	Stream Gage	Onsite Rainfall	Comments
12/15/2007	16.21	0.98	
12/16/2007	23.92	0.42	Most likely bank full event CSG
2/18/2008	22.46	1.33	
3/7/2008	24.62	0.87	
3/15/2008	31.45	1.08	
4/5/2008	23.29	1.78	
6/14/2008	18.95	0.7	
6/15/2008	24.08	0.76	Most likely bank full event CSG
7/8/2008	29.24	0.03	
7/9/2008	21.23	0.02	
7/10/2008	24.86	0.01	Rainfall offsite, upstream
8/27/2008	35.23	0	Rainfall offsite, upstream
9/6/2008	36.83	0	Rainfall offsite, upstream
11/14/2008	20.93	0.86	
11/15/2008	27.73	0.56	Most likely bank full event CSG

Stream Water Level vs. Rainfall

